Zion Tech Group

Tag: GLP1

  • Josh Gad Reveals He’s Lost 40 Lbs on GLP-1 Medication


    Josh Gad Has Lost 40 Lbs on GLP-1 Medication

    Josh Gad
    Theo Wargo/Getty Images

    Josh Gad is opening up about the weight loss success he’s had with GLP-1 medication — and sharing some of the conflicted feelings he’s had along the way.

    “I’m on a GLP-1 … this is the first time I’ve opened up about this,” the actor, 43, revealed during the Monday, January 27, episode of Dax Shepard’s “Armchair Expert” podcast. “It has suppressed, in a great way, that noise. … When I wake up, I feel hunger pains — and so much of that is psychological, right? And what this does is it takes away that signal.”

    GLP-1 medications, which include Ozempic and Mounjaro, are a class of drugs originally developed to treat diabetes. They can also be prescribed for weight loss in conjunction with diet and exercise.

    Gad revealed on Monday that he lost 40 pounds on the first GLP-1 he tried but had to change medications because he developed diverticulitis, an inflammation of small pouches that build in the colon.

    “It is a miracle drug,” he said. “I was really bummed out because it was working incredibly for me and I had to switch.”

    The Frozen star noted that his medication doesn’t mean he can eat whatever he wants or skip the gym.

    Josh Gad Has Lost 40 Lbs on GLP-1 Medication 2

    Josh Gad in 2018 and 2025.
    WireImage; Getty Images

    “I’m figuring out this new one, and it is life-changing, but it also doesn’t negate the fact that it can’t be in the place of having a healthy relationship with food,” he explained. “It can’t be in the place of having a healthy relationship with exercise. … I’m having my own journey with it. Sometimes I feel like I’m cheating myself by doing this.”

    Gad went on to admit that he has worried about what his weight loss will mean for his career.

    Chelsea Handler, Kyle Richards and More Celebrities Who've Spoken About the Ozempic Weight Loss


    Related: Celebrities Who’ve Spoken About the Ozempic Weight Loss Trend

    Ozempic has become a hot topic when it comes to weight loss — with some stars confirming they have used the drug while others denied it. Chelsea Handler admitted during a January 2023 episode of the “Call Her Daddy” podcast that she unknowingly took the Type 2 diabetes medication, which is traditionally used to improve […]

    “I’ve always been the funny fat guy. Can I be the funny skinny guy? Can I be the hot leading man?” he wondered. “I don’t know that people would accept me as those things.”

    His kids, however, are the main thing driving his journey. The comedian shares daughters Ava, 14, and Isabella, 10, with wife Ida Darvish.

    “I’m not as worried about [my career] because my primary goal is, I want to be there for my kids,” Gad said. “Everything else is bulls—.”

    Gad also said that Darvish, 49, is concerned he won’t address the underlying issues that have caused past weight gain, noting that she’s “not thrilled” he’s taking the medication.



    Josh Gad, known for his roles in movies like “Frozen” and “Beauty and the Beast,” has recently revealed that he has lost 40 lbs thanks to GLP-1 medication. The actor took to social media to share his weight loss journey, expressing his excitement and gratitude for the progress he has made.

    GLP-1 medication, also known as glucagon-like peptide-1 receptor agonists, is commonly used to treat type 2 diabetes but has also been shown to aid in weight loss. Josh Gad’s success with this medication serves as an inspiration to others who may be struggling with their own weight loss goals.

    Fans of the actor have been quick to congratulate him on his achievement, praising his dedication and determination. Josh Gad’s openness about his weight loss journey is not only commendable but also serves as a reminder that with the right support and resources, anyone can achieve their health and wellness goals.

    Congratulations to Josh Gad on his impressive weight loss journey – we can’t wait to see where his newfound health and vitality take him next!

    Tags:

    1. Josh Gad weight loss journey
    2. GLP-1 medication success story
    3. Celebrity weight loss transformation
    4. How Josh Gad lost 40 lbs
    5. GLP-1 treatment for weight loss
    6. Josh Gad health update
    7. Weight loss progress with GLP-1 medication
    8. Celebrity health news
    9. Josh Gad’s weight loss secret
    10. GLP-1 medication and weight loss benefits

    #Josh #Gad #Reveals #Hes #Lost #Lbs #GLP1 #Medication

  • Allurion Launches Breakthrough Study Combining Gastric Balloon with GLP-1 to Preserve Muscle Mass






    Allurion Technologies (NYSE: ALUR) has announced plans to start a clinical study combining its Allurion Program with GLP-1 agonists to optimize muscle mass during weight loss treatment. The initiative addresses a significant concern with GLP-1 therapy, which has shown approximately 40% reduction in lean mass as a proportion of total weight lost.

    Previous studies of the Allurion Balloon combined with their Virtual Care Suite have demonstrated promising results: In a study of 571 patients, participants gained 5.6% in lean body mass while losing 14% of total body weight over four months. Another study with 167 patients showed a 15.7% weight reduction with no muscle mass loss.

    The company aims to prove that combining their balloon technology with GLP-1 therapy could become the gold standard for obesity care by enabling significant weight loss while improving muscle mass and body composition.

    Allurion Technologies (NYSE: ALUR) ha annunciato piani per avviare uno studio clinico che combina il suo Programma Allurion con agonisti del GLP-1 per ottimizzare la massa muscolare durante il trattamento per la perdita di peso. Questa iniziativa affronta una preoccupazione significativa con la terapia GLP-1, che ha mostrato una riduzione di circa il 40% della massa magra come proporzione del peso totale perso.

    Studi precedenti sul pallone Allurion combinato con la loro Virtual Care Suite hanno dimostrato risultati promettenti: in uno studio di 571 pazienti, i partecipanti hanno guadagnato il 5,6% di massa corporea magra mentre perdevano il 14% del peso corporeo totale in quattro mesi. Un altro studio con 167 pazienti ha mostrato una riduzione del peso del 15,7% senza perdita di massa muscolare.

    L’azienda mira a dimostrare che la combinazione della loro tecnologia del pallone con la terapia GLP-1 potrebbe diventare lo standard d’oro per la cura dell’obesità, consentendo una significativa perdita di peso mentre si migliora la massa muscolare e la composizione corporea.

    Allurion Technologies (NYSE: ALUR) ha anunciado planes para iniciar un estudio clínico que combina su Programa Allurion con agonistas de GLP-1 para optimizar la masa muscular durante el tratamiento para la pérdida de peso. Esta iniciativa aborda una preocupación significativa con la terapia GLP-1, que ha mostrado una reducción de aproximadamente el 40% en la masa magra como proporción del peso total perdido.

    Estudios previos sobre el Globo Allurion combinado con su Virtual Care Suite han demostrado resultados prometedores: en un estudio de 571 pacientes, los participantes ganaron un 5,6% en masa corporal magra mientras perdían un 14% del peso corporal total en cuatro meses. Otro estudio con 167 pacientes mostró una reducción del peso del 15,7% sin pérdida de masa muscular.

    La empresa tiene como objetivo demostrar que la combinación de su tecnología de globo con la terapia de GLP-1 podría convertirse en el estándar de oro para el tratamiento de la obesidad al permitir una pérdida de peso significativa mientras se mejora la masa muscular y la composición corporal.

    올루리온 테크놀로지스 (NYSE: ALUR)는 체중 감소 치료 중 근육량을 최적화하기 위해 Allurion 프로그램과 GLP-1 작용제를 결합한 임상 연구를 시작할 계획을 발표했습니다. 이 이니셔티브는 GLP-1 요법과 관련된 심각한 우려를 다루고 있으며, 이는 총 체중 감소의 약 40%가 제지방으로 감소하는 것으로 나타났습니다.

    올루리온 풍선과 그들의 가상 케어 스위트를 결합한 이전 연구들은 유망한 결과를 보여주었습니다: 571명의 환자를 대상으로 한 연구에서 참가자들은 4개월 동안 총 체중의 14%를 잃는 동안 5.6%의 제지방량을 증가시켰습니다. 167명의 환자를 대상으로 한 또 다른 연구에서는 근육량 손실 없이 15.7%의 체중 감소가 나타났습니다.

    회사는 풍선 기술과 GLP-1 요법의 조합이 체중 감소를 유도하면서 근육량과 신체 구성 개선을 가능하게 하여 비만 치료의 금본위제가 될 수 있음을 입증하는 것을 목표로 하고 있습니다.

    Allurion Technologies (NYSE: ALUR) a annoncé des plans pour commencer une étude clinique combinant son Programme Allurion avec des agonistes du GLP-1 afin d’optimiser la masse musculaire durant le traitement de la perte de poids. Cette initiative répond à une préoccupation significative liée à la thérapie GLP-1, qui a montré une réduction d’environ 40% de la masse maigre par rapport au poids total perdu.

    Des études antérieures sur le ballon Allurion combiné avec leur Virtual Care Suite ont démontré des résultats prometteurs : dans une étude de 571 patients, les participants ont gagné 5,6% en masse corporelle maigre tout en perdant 14% de leur poids corporel total en quatre mois. Une autre étude avec 167 patients a montré une réduction de poids de 15,7% sans perte de masse musculaire.

    L’entreprise vise à prouver que la combinaison de sa technologie de ballon avec la thérapie GLP-1 pourrait devenir la norme en matière de soins contre l’obésité, en permettant une perte de poids significative tout en améliorant la masse musculaire et la composition corporelle.

    Allurion Technologies (NYSE: ALUR) hat Pläne angekündigt, eine klinische Studie zu starten, die sein Allurion-Programm mit GLP-1-Agonisten kombiniert, um die Muskelmasse während der Gewichtsabnahme zu optimieren. Diese Initiative spricht ein erhebliches Anliegen in Bezug auf die GLP-1-Therapie an, die eine Reduzierung von etwa 40% der fettfreien Masse als Anteil des insgesamt verlorenen Gewichts gezeigt hat.

    Frühere Studien zum Allurion-Ballon in Kombination mit ihrem Virtual Care Suite haben vielversprechende Ergebnisse gezeigt: In einer Studie mit 571 Patienten gewannen die Teilnehmer 5,6% an fettfreier Körpermasse, während sie in vier Monaten 14% ihres Gesamtkörpergewichts verloren. Eine weitere Studie mit 167 Patienten zeigte eine Gewichtsreduktion von 15,7%, ohne dass es zu einem Verlust der Muskelmasse kam.

    Das Unternehmen zielt darauf ab, nachzuweisen, dass die Kombination seiner Ballontechnologie mit der GLP-1-Therapie zum Goldstandard in der Adipositasbehandlung werden kann, indem sie eine signifikante Gewichtsabnahme bei gleichzeitiger Verbesserung der Muskelmasse und der Körperzusammensetzung ermöglicht.

    Positive


    • Previous studies showed 14% total weight loss with 5.6% lean mass gain over 4 months

    • Another study demonstrated 15.7% weight reduction without muscle mass loss

    • Potential to address significant unmet need in GLP-1 therapy market

    Insights


    This strategic initiative by Allurion represents a potentially game-changing development in the rapidly expanding obesity treatment market. The company is targeting a critical weakness in GLP-1 treatments – the significant loss of lean muscle mass, which affects approximately 40% of total weight lost during therapy.

    The preliminary data is particularly compelling: Allurion’s existing studies show patients achieving 14-15.7% total weight loss while either maintaining or increasing muscle mass – a stark contrast to the muscle wasting observed with GLP-1 treatments alone. In one significant study of 571 patients, subjects achieved a 5.6% increase in lean body mass while losing weight, suggesting a superior metabolic outcome.

    This positions Allurion to potentially capture a significant share of the complementary treatment market for GLP-1 users, estimated to reach $100 billion by 2030. The market opportunity is substantial, considering that:

    • Muscle preservation during weight loss is important for long-term metabolic health and weight maintenance
    • The combination therapy could become a preferred treatment protocol for healthcare providers concerned about muscle wasting in GLP-1 patients
    • This approach could differentiate Allurion from other weight loss device manufacturers and position them as a leader in comprehensive obesity care

    The success of this clinical study could significantly enhance Allurion’s market position and drive adoption of their program among the growing population of GLP-1 users. However, investors should note that this announcement represents an intention to initiate studies and actual clinical validation will require time and substantial investment before potential commercialization.












    NATICK, Mass.–(BUSINESS WIRE)–
    Allurion Technologies, Inc. (“Allurion” or the “Company”) (NYSE: ALUR), a company dedicated to ending obesity, today announced its intention to initiate a clinical study on the combination of the Allurion Program with GLP-1 agonists to improve muscle mass and overall body composition.

    Previous studies in patients undergoing GLP-1 therapy have demonstrated reductions in lean mass of approximately 40% as a proportion of total weight lost.1 In contrast, in previous studies, patients treated with the Allurion Balloon in combination with the Allurion Virtual Care Suite have demonstrated strong patient outcomes in which patients lose weight while maintaining, and in some cases, increasing, muscle mass. In one study of 571 patients, patients treated with the Allurion Balloon gained 5.6% in lean body mass while losing 14% of their total body weight over four months.2 In another study of 167 patients, patients treated with the Allurion Balloon experienced a weight reduction of 15.7% with no change in muscle mass.

    “Reductions in lean mass and muscle wasting are significant unmet needs in the GLP-1 space, and our early data suggests that we may have a powerful tool in achieving more metabolically healthy weight loss,” said Dr. Shantanu Gaur, Founder and CEO of Allurion. “The goal of our study would be to prove that, by combining the Allurion Balloon and Allurion Virtual Care Suite with GLP-1 therapy, patients can lose significant weight while increasing muscle mass and improving overall body composition. We are optimistic that this would be a significant addition to the possibilities of GLP-1 therapies and, if proven, could become the gold standard for obesity care.”

    About Allurion

    Allurion is dedicated to ending obesity. The Allurion Program is a weight-loss platform that combines the Allurion Gastric Balloon, the world’s first and only swallowable, procedure-lessTM gastric balloon for weight loss, the Allurion Virtual Care Suite, including the Allurion Mobile App for consumers and Allurion Insights for healthcare providers featuring the Iris AI Platform, and the Allurion Connected Scale. The Allurion Virtual Care Suite is also available to providers separately from the Allurion Program to help customize, monitor, and manage weight-loss therapy for patients regardless of their treatment plan. The Allurion Gastric Balloon is an investigational device in the United States.

    For more information about Allurion and the Allurion Virtual Care Suite, please visit www.allurion.com.

    Forward-Looking Statements

    This press release contains certain forward-looking statements within the meaning of the U.S. federal and state securities laws. These forward-looking statements generally are identified by the words “believe,” “project,” “expect,” “consider,” “anticipate,” “estimate,” “intend,” “strategy,” “future,” “opportunity,” “plan,” “target,” “may,” “should,” “will,” “would,” “will be,” “will continue,” “will likely result,” “if,” and similar expressions and include statements regarding Allurion’s plan to initiate a clinical study to focus on the combination of the Allurion Program and GLP-1s designed to improve retention of muscle mass and overall body composition, the Allurion Program being a powerful tool in achieving more metabolically healthy weight loss, the ability of the study to demonstrate that the combination of the Allurion Program and GLP-1s will allow patients to lose significant weight while increasing muscle mass and improving overall body composition, the combination being a powerful addition to the standard of care if such study is initiated and completed, and other statements about future events that reflect the current beliefs and assumptions of Allurion’s management based on information currently available to them and, as a result, are subject to risks and uncertainties. Forward-looking statements are predictions, projections and other statements about future events that reflect the current beliefs and assumptions of Allurion’s management based on information currently available to them and, as a result, are subject to risks and uncertainties. Many factors could cause actual future results or developments to differ materially from the forward-looking statements in this press release, including but not limited to (i) the ability of Allurion to obtain regulatory approval for and successfully commercialize the Allurion Program, (ii) the timing of and results from its clinical studies and trials, (iii) the evolution of the markets in which Allurion competes and the rise of GLP-1 drugs, (iv) the ability of Allurion to defend its intellectual property and satisfy regulatory requirements, (v) the impact of the COVID-19 pandemic, RussiaUkraine war and Israel-Hamas war on Allurion’s business, (vi) Allurion’s expectations regarding its market opportunities, (vii) the outcome of any legal proceedings against Allurion, (viii) the risk of economic downturns and a changing regulatory landscape in the highly competitive industry in which Allurion operates, and (ix) the ability of Allurion to obtain sufficient funding to initiate and/or complete any clinical studies that demonstrate positive results. The foregoing list of factors is not exhaustive. You should carefully consider the foregoing factors and the other risks and uncertainties described in the “Risk Factors” section of the Company’s Annual Report on Form 10-K filed on March 26, 2026 and Amendment No. 1 thereto filed on April 29, 2024, the Company’s Quarterly Report on Form 10-Q filed on November 13, 2024 and other documents filed by Allurion from time to time with the U.S. Securities and Exchange Commission. These filings identify and address other important risks and uncertainties that could cause actual events and results to differ materially from those contained in the forward-looking statements. Forward-looking statements speak only as of the date they are made. Readers are cautioned not to put undue reliance on forward-looking statements, and Allurion assumes no obligation and does not intend to update or revise these forward-looking statements, whether as a result of new information, future events, or otherwise. Allurion does not give any assurance that it will achieve its expectations.

    _____________________________

    1 Wilding et al. NEJM. 2021, 384, 989-1002; 10.1056/NEJMoa2032183

    2 Dejeu et al. Clin. Pract. 2024, 14(3), 765-778; https://doi.org/10.3390/clinpract14030061

    Global Media

    Hannah Lindberg

    hlindberg@allurion.com

    Investor Contact

    Mike Cavanaugh, Investor Relations

    ICR Westwicke

    (617) 877-9641

    mike.cavanaugh@westwicke.com

    Source: Allurion Technologies, Inc.








    FAQ



    What are the results of Allurion’s (ALUR) previous weight loss studies?


    Previous studies showed patients lost 14% of total body weight while gaining 5.6% lean body mass over four months. A separate study demonstrated 15.7% weight reduction with no muscle mass loss.


    How does Allurion’s (ALUR) approach differ from standard GLP-1 therapy?


    While GLP-1 therapy typically results in 40% lean mass reduction as a proportion of total weight lost, Allurion’s program has demonstrated weight loss while maintaining or increasing muscle mass.


    What is the goal of Allurion’s (ALUR) new clinical study?


    The study aims to prove that combining the Allurion Balloon and Virtual Care Suite with GLP-1 therapy can achieve significant weight loss while increasing muscle mass and improving body composition.


    How much lean mass is typically lost during GLP-1 therapy compared to Allurion’s (ALUR) program?


    GLP-1 therapy typically results in about 40% lean mass reduction, while Allurion’s program has shown the ability to maintain or increase muscle mass during weight loss.







    Allurion Launches Breakthrough Study Combining Gastric Balloon with GLP-1 to Preserve Muscle Mass

    Allurion, a leader in non-surgical weight loss solutions, has announced the launch of a groundbreaking study that combines their Elipse gastric balloon with GLP-1 receptor agonists to help preserve muscle mass during weight loss. This innovative approach aims to address one of the biggest concerns with traditional weight loss methods – the loss of muscle mass, which can have negative effects on metabolism and overall health.

    GLP-1 receptor agonists are a class of medications commonly used to treat type 2 diabetes and have been shown to have positive effects on weight loss and metabolic health. By combining these medications with the Elipse gastric balloon, Allurion hopes to provide a comprehensive solution that not only helps patients lose weight, but also helps them maintain lean muscle mass and metabolic health.

    The study will involve a group of participants who will undergo treatment with the Elipse gastric balloon and GLP-1 receptor agonists for a period of six months. Researchers will measure changes in body composition, muscle mass, metabolic markers, and overall health outcomes to evaluate the effectiveness of this novel approach.

    Allurion is excited to be at the forefront of this research and hopes that the results of this study will provide valuable insights into the potential benefits of combining gastric balloons with GLP-1 receptor agonists for weight loss and muscle preservation. Stay tuned for updates on this exciting study and the potential impact it could have on the field of weight loss and metabolic health.

    Tags:

    Allurion, gastric balloon, GLP-1, muscle mass preservation, weight loss study, obesity treatment, innovative research, gastric balloon technology, muscle mass maintenance, metabolic health, Allurion study findings

    #Allurion #Launches #Breakthrough #Study #Combining #Gastric #Balloon #GLP1 #Preserve #Muscle #Mass

  • Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381, 841–851 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377, 1228–1239 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392, 1519–1529 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N. Engl. J. Med. 385, 896–907 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 391, 109–121 (2024).


    Google Scholar
     

  • Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069–1084 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 394, 131–138 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Muskiet, M. H. A. et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 6, 859–869 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Tuttle, K. R. et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 6, 605–617 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, A. S. et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N. Engl. J. Med. 382, 2117–2128 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wharton, S. et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N. Engl. J. Med. 389, 877–888 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, J. H., Kwon, J., Nan, B. & Reikes, A. Trends in glucagon-like peptide 1 receptor agonist use, 2014 to 2022. J. Am. Pharm. Assoc. 64, 133–138 (2024).

    CAS 

    Google Scholar
     

  • Hegland, T.A., Fang, Z. & Bucher, K. GLP-1 medication use for type 2 diabetes has soared.JAMA 332, 952–953 (2024).

    PubMed 

    Google Scholar
     

  • Sodhi, M., Rezaeianzadeh, R., Kezouh, A. & Etminan, M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA 330, 1795–1797 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidal, J., Flores, L., Jiménez, A., Pané, A. & de Hollanda, A. What is the evidence regarding the safety of new obesity pharmacotherapies. Int. J. Obes. https://doi.org/10.1038/s41366-024-01488-5 (2024).

  • Wang, W. et al. Association of semaglutide with risk of suicidal ideation in a real-world cohort. Nat. Med. 30, 168–176 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurindo, L. F. et al. GLP-1a: going beyond traditional use. Int. J. Mol. Sci. 23, 739 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubin, R. Could GLP-1 receptor agonists like semaglutide treat addiction, Alzheimer disease, and other conditions? JAMA 331, 1519–1521 (2024).

    PubMed 

    Google Scholar
     

  • Wang, W. et al. Associations of semaglutide with incidence and recurrence of alcohol use disorder in real-world population. Nat. Commun. 15, 4548 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Association of semaglutide with tobacco use disorder in patients with type 2 diabetes: target trial emulation using real-world data. Ann. Intern. Med. 177, 1016–1027 (2024).

    PubMed 

    Google Scholar
     

  • Drucker, D. J. The benefits of GLP-1 drugs beyond obesity. Science 385, 258–260 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Lenharo, M. Why do obesity drugs seem to treat so many other ailments? Nature 633, 758–760 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Leggio, L. et al. GLP-1 receptor agonists are promising but unproven treatments for alcohol and substance use disorders. Nat. Med. 29, 2993–2995 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wium-Andersen, I. K. et al. Use of GLP-1 receptor agonists and subsequent risk of alcohol-related events. A nationwide register-based cohort and self-controlled case series study. Basic Clin. Pharmacol. Toxicol. 131, 372–379 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klausen, M. K. et al. Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial. JCI Insight 7, e159863 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yammine, L., Balderas, J. C., Weaver, M. F. & Schmitz, J. M. Feasibility of exenatide, a GLP-1R agonist, for treating cocaine use disorder: a case series study. J. Addict. Med. 17, 481–484 (2023).

    PubMed 

    Google Scholar
     

  • Angarita, G. A. et al. Testing the effects of the GLP-1 receptor agonist exenatide on cocaine self-administration and subjective responses in humans with cocaine use disorder. Drug Alcohol Depend. 221, 108614 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit, T. S., Sharma, A. N., Lucot, J. B. & Elased, K. M. Antipsychotic-like effect of GLP-1 agonist liraglutide but not DPP-IV inhibitor sitagliptin in mouse model for psychosis. Physiol. Behav. 114−115, 38–41 (2013).


    Google Scholar
     

  • Gunturu, S. The potential role of GLP-1 agonists in psychiatric disorders: a paradigm shift in mental health treatment. Indian J. Psychol. Med. 46, 193–195 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Ojeda, W. & Hurley, R. A. Glucagon-like peptide 1: an introduction and possible implications for neuropsychiatry. J. Neuropsychiatry Clin. Neurosci. 36, A4–A86 (2024).

    PubMed 

    Google Scholar
     

  • Flintoff, J., Kesby, J. P., Siskind, D. & Burne, T. H. J. Treating cognitive impairment in schizophrenia with GLP-1RAs: an overview of their therapeutic potential. Expert Opin. Investig. Drugs 30, 877–891 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • European Medicines Agency. Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 8−11 April 2024. https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-prac-8-11-april-2024 (12 April 2024).

  • Du, H., Meng, X., Yao, Y. & Xu, J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer’s disease. Front. Endocrinol. 13, 1033479 (2022).


    Google Scholar
     

  • Mehan, S. et al. Potential roles of glucagon-like peptide-1 and its analogues in dementia targeting impaired insulin secretion and neurodegeneration. Degener. Neurol. Neuromuscul. Dis. 12, 31–59 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colin, I. M., Szczepanski, L. W., Gérard, A. C. & Elosegi, J. A. Emerging evidence for the use of antidiabetic drugs, glucagon-like peptide 1 receptor agonists, for the treatment of Alzheimer’s disease. touchREV. Endocrinol. 19, 16–24 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenharo, M. Obesity drugs have another superpower: taming inflammation. Nature 626, 246 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Nørgaard, C. H. et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimer’s Dement. 8, e12268 (2022).


    Google Scholar
     

  • De Giorgi, R. et al. 12-month neurological and psychiatric outcomes of semaglutide use for type 2 diabetes: a propensity-score matched cohort study. eClinicalMedicine 74, 102726 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atri, A. et al. evoke and evoke+: design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating the neuroprotective effects of semaglutide in early Alzheimer’s disease. Alzheimer’s Dement. 18, e062415 (2022).


    Google Scholar
     

  • Manavi, M. A. Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities. Neuropeptides 94, 102250 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole‑kindled mice. Int. J. Mol. Med. 48, 219 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussein, A. M. et al. Effects of GLP-1 receptor activation on a pentylenetetrazole−kindling rat model. Brain Sci. 9, 108 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. The glucagon-like peptide-1 analogue liraglutide reduces seizures susceptibility, cognition dysfunction and neuronal apoptosis in a mouse model of Dravet syndrome. Front. Pharmacol. 11, 136 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jia, G., Aroor, A. R. & Sowers, J. R. Glucagon-like peptide 1 receptor activation and platelet function: beyond glycemic control. Diabetes 65, 1487–1489 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 24, 15–30 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Sternkopf, M. et al. Native, intact glucagon-like peptide 1 is a natural suppressor of thrombus growth under physiological flow conditions. Arter. Thromb. Vasc. Biol. 40, e65–e77 (2020).

    CAS 

    Google Scholar
     

  • Steven, S. et al. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice. Br. J. Pharmacol. 174, 1620–1632 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Cameron-Vendrig, A. et al. Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes 65, 1714–1723 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Chen, R., Jia, Y., Chen, M. & Shuai, Z. Effects of exenatide on coagulation and platelet aggregation in patients with type 2 diabetes. Drug Des. Devel. Ther. 15, 3027–3040 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horvei, L. D., Brækkan, S. K. & Hansen, J. B. Weight change and risk of venous thromboembolism: the Tromsø study. PLoS ONE 11, e0168878 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Lemos, J. A. et al. Tirzepatide reduces 24-hour ambulatory blood pressure in adults with body mass index ≥27 kg/m2: SURMOUNT-1 Ambulatory Blood Pressure Monitoring Substudy. Hypertension 81, e41–e43 (2024).

    PubMed 

    Google Scholar
     

  • Goodwill, A. G. et al. Cardiovascular and hemodynamic effects of glucagon-like peptide-1. Rev. Endocr. Metab. Disord. 15, 209–217 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro-Silva, J. C., Tavares, C. A. M. & Girardi, A. C. C. The blood pressure lowering effects of glucagon-like peptide-1 receptor agonists: a mini-review of the potential mechanisms. Curr. Opin. Pharmacol. 69, 102355 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Goud, A., Zhong, J., Peters, M., Brook, R. D. & Rajagopalan, S. GLP-1 agonists and blood pressure: a review of the evidence. Curr. Hypertens. Rep. 18, 16 (2016).

    PubMed 

    Google Scholar
     

  • Yang, F. et al. GLP-1 receptor: a new target for sepsis. Front. Pharmacol. 12, 706908 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helmstädter, J. et al. GLP-1 analog liraglutide improves vascular function in polymicrobial sepsis by reduction of oxidative stress and inflammation. Antioxidants 10, 1175 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, H. et al. Activation of glucagon-like peptide-1 receptor in microglia exerts protective effects against sepsis-induced encephalopathy via attenuating endoplasmic reticulum stress-associated inflammation and apoptosis in a mouse model of sepsis. Exp. Neurol. 363, 114348 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Scirica, B. et al. The effect of semaglutide on mortality and COVID-19–related deaths.JACC 84, 1632–1642 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Xu, R., Kaelber, D. C. & Berger, N. A. Glucagon-like peptide 1 receptor agonists and 13 obesity-associated cancers in patients with type 2 diabetes. JAMA Netw. Open 7, e2421305 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, M. et al. The relationship between the use of GLP-1 receptor agonists and the incidence of respiratory illness: a meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 15, 164 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altintas Dogan, A. D. et al. Respiratory effects of treatment with a glucagon-like peptide-1 receptor agonist in patients suffering from obesity and chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 17, 405–414 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foer, D. et al. Association of GLP-1 receptor agonists with chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes. Am. J. Respir. Crit. Care Med. 208, 1088–1100 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pradhan, R. et al. Novel antihyperglycaemic drugs and prevention of chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes: population based cohort study. BMJ 379, e071380 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeo, Y.H. et al. Increased risk of aspiration pneumonia associated with endoscopic procedures among patients with glucagon-like peptide 1 receptor agonist use.Gastroenterology 167, 402–404 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Dixit, A. A., Bateman, B. T., Hawn, M. T., Odden, M. C. & Sun, E. C. Preoperative GLP-1 receptor agonist use and risk of postoperative respiratory complications. JAMA 331, 1672–1673 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. The role of glucagon-like peptide-1 receptor agonists in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 18, 129–137 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langenberg, C., Hingorani, A. D. & Whitty, C. J. M. Biological and functional multimorbidity—from mechanisms to management. Nat. Med. 29, 1649–1657 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Postacute sequelae of SARS-CoV-2 infection in the pre-Delta, Delta, and Omicron eras. N. Engl. J. Med. 391, 515–525 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, M., Xie, Y., Topol, E. J. & Al-Aly, Z. Three-year outcomes of post-acute sequelae of COVID-19. Nat. Med. 30, 1564–1573 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 29, 2347–2357 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, E., Xie, Y. & Al-Aly, Z. Long-term gastrointestinal outcomes of COVID-19. Nat. Commun. 14, 983 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, E., Xie, Y. & Al-Aly, Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol. 11, 120–128 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Long-term outcomes following hospital admission for COVID-19 versus seasonal influenza: a cohort study. Lancet Infect. Dis. 24, 239–255 (2024).

    PubMed 

    Google Scholar
     

  • Al-Aly, Z. & Topol, E. Solving the puzzle of long Covid. Science 383, 830–832 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aly, Z. et al. Long COVID science, research and policy. Nat. Med. 30, 2148–2164 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Proton pump inhibitors and risk of incident CKD and progression to ESRD. J. Am. Soc. Nephrol. 27, 3153–3163 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Risk of death among users of proton pump inhibitors: a longitudinal observational cohort study of United States veterans. BMJ Open 7, e015735 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Long-term kidney outcomes among users of proton pump inhibitors without intervening acute kidney injury. Kidney Int. 91, 1482–1494 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int. 93, 741–752 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Maynard, C. Ascertaining veterans’ vital status: VA data sources for mortality ascertainment and cause of death. https://www.hsrd.research.va.gov/for_researchers/cyber_seminars/archives/3783-notes.pdf (2017).

  • Cai, M. et al. Temporal trends in incidence rates of lower extremity amputation and associated risk factors among patients using Veterans Health Administration services from 2008 to 2018. JAMA Netw. Open 4, e2033953 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of major adverse cardiovascular events: emulation of a randomised target trial using electronic health records. Lancet Diabetes Endocrinol. 11, 644–656 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Clinical implications of estimated glomerular filtration rate dip following sodium−glucose cotransporter-2 inhibitor initiation on cardiovascular and kidney outcomes. J. Am. Heart Assoc. 10, e020237 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of sodium−glucose cotransporter 2 inhibitors vs sulfonylureas in patients with type 2 diabetes. JAMA Intern. Med. 181, 1043–1053 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of kidney outcomes: emulation of a target trial using health care databases. Diabetes Care 43, 2859–2869 (2020).

    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of the sodium−glucose cotransporter 2 inhibitor empagliflozin versus other antihyperglycemics on risk of major adverse kidney events. Diabetes Care 43, 2785–2795 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19.JAMA Intern. Med. 183, 554–564 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Bowe, B. & Al-Aly, Z. Nirmatrelvir and risk of hospital admission or death in adults with Covid-19: emulation of a randomized target trial using electronic health records. BMJ 381, e073312 (2023).

    PubMed 

    Google Scholar
     

  • Xie, Y., Bowe, B. & Al-Aly, Z. Molnupiravir and risk of hospital admission or death in adults with Covid-19: emulation of a randomized target trial using electronic health records. BMJ 380, e072705 (2023).

    PubMed 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Molnupiravir and risk of post-acute sequelae of Covid-19: cohort study. BMJ 381, e074572 (2023).

    PubMed 

    Google Scholar
     

  • van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16, 219–242 (2007).

    PubMed 

    Google Scholar
     

  • Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis (Springer, 2015).

  • Schneeweiss, S. Automated data-adaptive analytics for electronic healthcare data to study causal treatment effects. Clin. Epidemiol. 10, 771–788 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneeweiss, S. et al. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20, 512–522 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity‐score matched samples. Stat. Med. 28, 3083–3107 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crump, R. K., Hotz, V. J., Imbens, G. W. & Mitnik, O. A. Dealing with limited overlap in estimation of average treatment effects. Biometrika 96, 187–199 (2009).


    Google Scholar
     

  • Hernan, M. A. & Robins, J. M. Causal Inference: What If (CRC Press, 2010).

  • Uno, H. et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clin. Oncol. 32, 2380–2385 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen, P. K., Hansen, M. G. & Klein, J. P. Regression analysis of restricted mean survival time based on pseudo-observations. Lifetime Data Anal. 10, 335–350 (2004).

    PubMed 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).


    Google Scholar
     



GLP-1 receptor agonists are a class of medications commonly used to treat type 2 diabetes by stimulating insulin production and reducing blood sugar levels. However, like any medication, there are potential risks and side effects associated with their use.

In this post, we will explore the effectiveness of GLP-1 receptor agonists in managing type 2 diabetes, as well as the potential risks and side effects that patients should be aware of.

Effectiveness of GLP-1 receptor agonists:

Studies have shown that GLP-1 receptor agonists are highly effective in lowering blood sugar levels in patients with type 2 diabetes. They work by stimulating the release of insulin from the pancreas, slowing down digestion, and reducing the production of glucose in the liver.

In addition to lowering blood sugar levels, GLP-1 receptor agonists have also been shown to promote weight loss in patients with type 2 diabetes. This is because they can reduce appetite and increase feelings of fullness, leading to a decrease in caloric intake.

Risks and side effects of GLP-1 receptor agonists:

While GLP-1 receptor agonists are generally well-tolerated, there are some potential risks and side effects that patients should be aware of. These can include:

– Nausea and vomiting
– Diarrhea
– Hypoglycemia (low blood sugar)
– Pancreatitis
– Thyroid tumors
– Allergic reactions

It’s important for patients to discuss the potential risks and benefits of GLP-1 receptor agonists with their healthcare provider before starting treatment. Additionally, patients should be monitored regularly for any signs of side effects or complications.

Overall, GLP-1 receptor agonists are a valuable treatment option for patients with type 2 diabetes, but it’s important to weigh the potential risks and benefits before starting treatment. By mapping out the effectiveness and risks of these medications, patients can make informed decisions about their diabetes management.

Tags:

  1. GLP-1 receptor agonists
  2. Effectiveness of GLP-1 receptor agonists
  3. Risks of GLP-1 receptor agonists
  4. GLP-1 agonist benefits
  5. GLP-1 receptor agonist safety
  6. GLP-1 agonist side effects
  7. GLP-1 agonist risk assessment
  8. GLP-1 receptor agonist efficacy
  9. GLP-1 agonist comparison
  10. GLP-1 agonist research findings

#Mapping #effectiveness #risks #GLP1 #receptor #agonists

  • Mapping the effectiveness and risks of GLP-1 receptor agonists

    Mapping the effectiveness and risks of GLP-1 receptor agonists


  • Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381, 841–851 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377, 1228–1239 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392, 1519–1529 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N. Engl. J. Med. 385, 896–907 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 391, 109–121 (2024).


    Google Scholar
     

  • Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069–1084 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 394, 131–138 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Muskiet, M. H. A. et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 6, 859–869 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Tuttle, K. R. et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 6, 605–617 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, A. S. et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N. Engl. J. Med. 382, 2117–2128 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wharton, S. et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N. Engl. J. Med. 389, 877–888 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, J. H., Kwon, J., Nan, B. & Reikes, A. Trends in glucagon-like peptide 1 receptor agonist use, 2014 to 2022. J. Am. Pharm. Assoc. 64, 133–138 (2024).

    CAS 

    Google Scholar
     

  • Hegland, T.A., Fang, Z. & Bucher, K. GLP-1 medication use for type 2 diabetes has soared.JAMA 332, 952–953 (2024).

    PubMed 

    Google Scholar
     

  • Sodhi, M., Rezaeianzadeh, R., Kezouh, A. & Etminan, M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA 330, 1795–1797 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidal, J., Flores, L., Jiménez, A., Pané, A. & de Hollanda, A. What is the evidence regarding the safety of new obesity pharmacotherapies. Int. J. Obes. https://doi.org/10.1038/s41366-024-01488-5 (2024).

  • Wang, W. et al. Association of semaglutide with risk of suicidal ideation in a real-world cohort. Nat. Med. 30, 168–176 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurindo, L. F. et al. GLP-1a: going beyond traditional use. Int. J. Mol. Sci. 23, 739 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubin, R. Could GLP-1 receptor agonists like semaglutide treat addiction, Alzheimer disease, and other conditions? JAMA 331, 1519–1521 (2024).

    PubMed 

    Google Scholar
     

  • Wang, W. et al. Associations of semaglutide with incidence and recurrence of alcohol use disorder in real-world population. Nat. Commun. 15, 4548 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Association of semaglutide with tobacco use disorder in patients with type 2 diabetes: target trial emulation using real-world data. Ann. Intern. Med. 177, 1016–1027 (2024).

    PubMed 

    Google Scholar
     

  • Drucker, D. J. The benefits of GLP-1 drugs beyond obesity. Science 385, 258–260 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Lenharo, M. Why do obesity drugs seem to treat so many other ailments? Nature 633, 758–760 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Leggio, L. et al. GLP-1 receptor agonists are promising but unproven treatments for alcohol and substance use disorders. Nat. Med. 29, 2993–2995 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wium-Andersen, I. K. et al. Use of GLP-1 receptor agonists and subsequent risk of alcohol-related events. A nationwide register-based cohort and self-controlled case series study. Basic Clin. Pharmacol. Toxicol. 131, 372–379 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klausen, M. K. et al. Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial. JCI Insight 7, e159863 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yammine, L., Balderas, J. C., Weaver, M. F. & Schmitz, J. M. Feasibility of exenatide, a GLP-1R agonist, for treating cocaine use disorder: a case series study. J. Addict. Med. 17, 481–484 (2023).

    PubMed 

    Google Scholar
     

  • Angarita, G. A. et al. Testing the effects of the GLP-1 receptor agonist exenatide on cocaine self-administration and subjective responses in humans with cocaine use disorder. Drug Alcohol Depend. 221, 108614 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit, T. S., Sharma, A. N., Lucot, J. B. & Elased, K. M. Antipsychotic-like effect of GLP-1 agonist liraglutide but not DPP-IV inhibitor sitagliptin in mouse model for psychosis. Physiol. Behav. 114−115, 38–41 (2013).


    Google Scholar
     

  • Gunturu, S. The potential role of GLP-1 agonists in psychiatric disorders: a paradigm shift in mental health treatment. Indian J. Psychol. Med. 46, 193–195 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Ojeda, W. & Hurley, R. A. Glucagon-like peptide 1: an introduction and possible implications for neuropsychiatry. J. Neuropsychiatry Clin. Neurosci. 36, A4–A86 (2024).

    PubMed 

    Google Scholar
     

  • Flintoff, J., Kesby, J. P., Siskind, D. & Burne, T. H. J. Treating cognitive impairment in schizophrenia with GLP-1RAs: an overview of their therapeutic potential. Expert Opin. Investig. Drugs 30, 877–891 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • European Medicines Agency. Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 8−11 April 2024. https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-prac-8-11-april-2024 (12 April 2024).

  • Du, H., Meng, X., Yao, Y. & Xu, J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer’s disease. Front. Endocrinol. 13, 1033479 (2022).


    Google Scholar
     

  • Mehan, S. et al. Potential roles of glucagon-like peptide-1 and its analogues in dementia targeting impaired insulin secretion and neurodegeneration. Degener. Neurol. Neuromuscul. Dis. 12, 31–59 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colin, I. M., Szczepanski, L. W., Gérard, A. C. & Elosegi, J. A. Emerging evidence for the use of antidiabetic drugs, glucagon-like peptide 1 receptor agonists, for the treatment of Alzheimer’s disease. touchREV. Endocrinol. 19, 16–24 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenharo, M. Obesity drugs have another superpower: taming inflammation. Nature 626, 246 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Nørgaard, C. H. et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimer’s Dement. 8, e12268 (2022).


    Google Scholar
     

  • De Giorgi, R. et al. 12-month neurological and psychiatric outcomes of semaglutide use for type 2 diabetes: a propensity-score matched cohort study. eClinicalMedicine 74, 102726 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atri, A. et al. evoke and evoke+: design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating the neuroprotective effects of semaglutide in early Alzheimer’s disease. Alzheimer’s Dement. 18, e062415 (2022).


    Google Scholar
     

  • Manavi, M. A. Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities. Neuropeptides 94, 102250 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole‑kindled mice. Int. J. Mol. Med. 48, 219 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussein, A. M. et al. Effects of GLP-1 receptor activation on a pentylenetetrazole−kindling rat model. Brain Sci. 9, 108 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. The glucagon-like peptide-1 analogue liraglutide reduces seizures susceptibility, cognition dysfunction and neuronal apoptosis in a mouse model of Dravet syndrome. Front. Pharmacol. 11, 136 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jia, G., Aroor, A. R. & Sowers, J. R. Glucagon-like peptide 1 receptor activation and platelet function: beyond glycemic control. Diabetes 65, 1487–1489 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 24, 15–30 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Sternkopf, M. et al. Native, intact glucagon-like peptide 1 is a natural suppressor of thrombus growth under physiological flow conditions. Arter. Thromb. Vasc. Biol. 40, e65–e77 (2020).

    CAS 

    Google Scholar
     

  • Steven, S. et al. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice. Br. J. Pharmacol. 174, 1620–1632 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Cameron-Vendrig, A. et al. Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes 65, 1714–1723 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Chen, R., Jia, Y., Chen, M. & Shuai, Z. Effects of exenatide on coagulation and platelet aggregation in patients with type 2 diabetes. Drug Des. Devel. Ther. 15, 3027–3040 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horvei, L. D., Brækkan, S. K. & Hansen, J. B. Weight change and risk of venous thromboembolism: the Tromsø study. PLoS ONE 11, e0168878 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Lemos, J. A. et al. Tirzepatide reduces 24-hour ambulatory blood pressure in adults with body mass index ≥27 kg/m2: SURMOUNT-1 Ambulatory Blood Pressure Monitoring Substudy. Hypertension 81, e41–e43 (2024).

    PubMed 

    Google Scholar
     

  • Goodwill, A. G. et al. Cardiovascular and hemodynamic effects of glucagon-like peptide-1. Rev. Endocr. Metab. Disord. 15, 209–217 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro-Silva, J. C., Tavares, C. A. M. & Girardi, A. C. C. The blood pressure lowering effects of glucagon-like peptide-1 receptor agonists: a mini-review of the potential mechanisms. Curr. Opin. Pharmacol. 69, 102355 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Goud, A., Zhong, J., Peters, M., Brook, R. D. & Rajagopalan, S. GLP-1 agonists and blood pressure: a review of the evidence. Curr. Hypertens. Rep. 18, 16 (2016).

    PubMed 

    Google Scholar
     

  • Yang, F. et al. GLP-1 receptor: a new target for sepsis. Front. Pharmacol. 12, 706908 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helmstädter, J. et al. GLP-1 analog liraglutide improves vascular function in polymicrobial sepsis by reduction of oxidative stress and inflammation. Antioxidants 10, 1175 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, H. et al. Activation of glucagon-like peptide-1 receptor in microglia exerts protective effects against sepsis-induced encephalopathy via attenuating endoplasmic reticulum stress-associated inflammation and apoptosis in a mouse model of sepsis. Exp. Neurol. 363, 114348 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Scirica, B. et al. The effect of semaglutide on mortality and COVID-19–related deaths.JACC 84, 1632–1642 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Xu, R., Kaelber, D. C. & Berger, N. A. Glucagon-like peptide 1 receptor agonists and 13 obesity-associated cancers in patients with type 2 diabetes. JAMA Netw. Open 7, e2421305 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, M. et al. The relationship between the use of GLP-1 receptor agonists and the incidence of respiratory illness: a meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 15, 164 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altintas Dogan, A. D. et al. Respiratory effects of treatment with a glucagon-like peptide-1 receptor agonist in patients suffering from obesity and chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 17, 405–414 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foer, D. et al. Association of GLP-1 receptor agonists with chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes. Am. J. Respir. Crit. Care Med. 208, 1088–1100 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pradhan, R. et al. Novel antihyperglycaemic drugs and prevention of chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes: population based cohort study. BMJ 379, e071380 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeo, Y.H. et al. Increased risk of aspiration pneumonia associated with endoscopic procedures among patients with glucagon-like peptide 1 receptor agonist use.Gastroenterology 167, 402–404 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Dixit, A. A., Bateman, B. T., Hawn, M. T., Odden, M. C. & Sun, E. C. Preoperative GLP-1 receptor agonist use and risk of postoperative respiratory complications. JAMA 331, 1672–1673 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. The role of glucagon-like peptide-1 receptor agonists in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 18, 129–137 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langenberg, C., Hingorani, A. D. & Whitty, C. J. M. Biological and functional multimorbidity—from mechanisms to management. Nat. Med. 29, 1649–1657 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Postacute sequelae of SARS-CoV-2 infection in the pre-Delta, Delta, and Omicron eras. N. Engl. J. Med. 391, 515–525 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, M., Xie, Y., Topol, E. J. & Al-Aly, Z. Three-year outcomes of post-acute sequelae of COVID-19. Nat. Med. 30, 1564–1573 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 29, 2347–2357 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, E., Xie, Y. & Al-Aly, Z. Long-term gastrointestinal outcomes of COVID-19. Nat. Commun. 14, 983 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, E., Xie, Y. & Al-Aly, Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol. 11, 120–128 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Long-term outcomes following hospital admission for COVID-19 versus seasonal influenza: a cohort study. Lancet Infect. Dis. 24, 239–255 (2024).

    PubMed 

    Google Scholar
     

  • Al-Aly, Z. & Topol, E. Solving the puzzle of long Covid. Science 383, 830–832 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aly, Z. et al. Long COVID science, research and policy. Nat. Med. 30, 2148–2164 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Proton pump inhibitors and risk of incident CKD and progression to ESRD. J. Am. Soc. Nephrol. 27, 3153–3163 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Risk of death among users of proton pump inhibitors: a longitudinal observational cohort study of United States veterans. BMJ Open 7, e015735 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Long-term kidney outcomes among users of proton pump inhibitors without intervening acute kidney injury. Kidney Int. 91, 1482–1494 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int. 93, 741–752 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Maynard, C. Ascertaining veterans’ vital status: VA data sources for mortality ascertainment and cause of death. https://www.hsrd.research.va.gov/for_researchers/cyber_seminars/archives/3783-notes.pdf (2017).

  • Cai, M. et al. Temporal trends in incidence rates of lower extremity amputation and associated risk factors among patients using Veterans Health Administration services from 2008 to 2018. JAMA Netw. Open 4, e2033953 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of major adverse cardiovascular events: emulation of a randomised target trial using electronic health records. Lancet Diabetes Endocrinol. 11, 644–656 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Clinical implications of estimated glomerular filtration rate dip following sodium−glucose cotransporter-2 inhibitor initiation on cardiovascular and kidney outcomes. J. Am. Heart Assoc. 10, e020237 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of sodium−glucose cotransporter 2 inhibitors vs sulfonylureas in patients with type 2 diabetes. JAMA Intern. Med. 181, 1043–1053 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of kidney outcomes: emulation of a target trial using health care databases. Diabetes Care 43, 2859–2869 (2020).

    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of the sodium−glucose cotransporter 2 inhibitor empagliflozin versus other antihyperglycemics on risk of major adverse kidney events. Diabetes Care 43, 2785–2795 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19.JAMA Intern. Med. 183, 554–564 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Bowe, B. & Al-Aly, Z. Nirmatrelvir and risk of hospital admission or death in adults with Covid-19: emulation of a randomized target trial using electronic health records. BMJ 381, e073312 (2023).

    PubMed 

    Google Scholar
     

  • Xie, Y., Bowe, B. & Al-Aly, Z. Molnupiravir and risk of hospital admission or death in adults with Covid-19: emulation of a randomized target trial using electronic health records. BMJ 380, e072705 (2023).

    PubMed 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Molnupiravir and risk of post-acute sequelae of Covid-19: cohort study. BMJ 381, e074572 (2023).

    PubMed 

    Google Scholar
     

  • van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16, 219–242 (2007).

    PubMed 

    Google Scholar
     

  • Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis (Springer, 2015).

  • Schneeweiss, S. Automated data-adaptive analytics for electronic healthcare data to study causal treatment effects. Clin. Epidemiol. 10, 771–788 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneeweiss, S. et al. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20, 512–522 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity‐score matched samples. Stat. Med. 28, 3083–3107 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crump, R. K., Hotz, V. J., Imbens, G. W. & Mitnik, O. A. Dealing with limited overlap in estimation of average treatment effects. Biometrika 96, 187–199 (2009).


    Google Scholar
     

  • Hernan, M. A. & Robins, J. M. Causal Inference: What If (CRC Press, 2010).

  • Uno, H. et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clin. Oncol. 32, 2380–2385 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen, P. K., Hansen, M. G. & Klein, J. P. Regression analysis of restricted mean survival time based on pseudo-observations. Lifetime Data Anal. 10, 335–350 (2004).

    PubMed 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).


    Google Scholar
     



  • GLP-1 receptor agonists are a class of medications commonly used to treat type 2 diabetes by stimulating insulin production and reducing blood sugar levels. However, like any medication, there are potential risks and side effects associated with their use.

    In this post, we will explore the effectiveness of GLP-1 receptor agonists in managing type 2 diabetes, as well as the potential risks and side effects that patients should be aware of.

    Effectiveness of GLP-1 receptor agonists:

    Studies have shown that GLP-1 receptor agonists are highly effective in lowering blood sugar levels in patients with type 2 diabetes. They work by stimulating the release of insulin from the pancreas, slowing down digestion, and reducing the production of glucose in the liver.

    In addition to lowering blood sugar levels, GLP-1 receptor agonists have also been shown to promote weight loss in patients with type 2 diabetes. This is because they can reduce appetite and increase feelings of fullness, leading to a decrease in caloric intake.

    Risks and side effects of GLP-1 receptor agonists:

    While GLP-1 receptor agonists are generally well-tolerated, there are some potential risks and side effects that patients should be aware of. These can include:

    – Nausea and vomiting
    – Diarrhea
    – Hypoglycemia (low blood sugar)
    – Pancreatitis
    – Thyroid tumors
    – Allergic reactions

    It’s important for patients to discuss the potential risks and benefits of GLP-1 receptor agonists with their healthcare provider before starting treatment. Additionally, patients should be monitored regularly for any signs of side effects or complications.

    Overall, GLP-1 receptor agonists are a valuable treatment option for patients with type 2 diabetes, but it’s important to weigh the potential risks and benefits before starting treatment. By mapping out the effectiveness and risks of these medications, patients can make informed decisions about their diabetes management.

    Tags:

    1. GLP-1 receptor agonists
    2. Effectiveness of GLP-1 receptor agonists
    3. Risks of GLP-1 receptor agonists
    4. GLP-1 agonist benefits
    5. GLP-1 receptor agonist safety
    6. GLP-1 agonist side effects
    7. GLP-1 agonist risk assessment
    8. GLP-1 receptor agonist efficacy
    9. GLP-1 agonist comparison
    10. GLP-1 agonist research findings

    #Mapping #effectiveness #risks #GLP1 #receptor #agonists

  • Mapping the effectiveness and risks of GLP-1 receptor agonists

    Mapping the effectiveness and risks of GLP-1 receptor agonists


  • Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381, 841–851 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377, 1228–1239 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392, 1519–1529 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N. Engl. J. Med. 385, 896–907 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 391, 109–121 (2024).


    Google Scholar
     

  • Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069–1084 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 394, 131–138 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Muskiet, M. H. A. et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 6, 859–869 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Tuttle, K. R. et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 6, 605–617 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, A. S. et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N. Engl. J. Med. 382, 2117–2128 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wharton, S. et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N. Engl. J. Med. 389, 877–888 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, J. H., Kwon, J., Nan, B. & Reikes, A. Trends in glucagon-like peptide 1 receptor agonist use, 2014 to 2022. J. Am. Pharm. Assoc. 64, 133–138 (2024).

    CAS 

    Google Scholar
     

  • Hegland, T.A., Fang, Z. & Bucher, K. GLP-1 medication use for type 2 diabetes has soared.JAMA 332, 952–953 (2024).

    PubMed 

    Google Scholar
     

  • Sodhi, M., Rezaeianzadeh, R., Kezouh, A. & Etminan, M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA 330, 1795–1797 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidal, J., Flores, L., Jiménez, A., Pané, A. & de Hollanda, A. What is the evidence regarding the safety of new obesity pharmacotherapies. Int. J. Obes. https://doi.org/10.1038/s41366-024-01488-5 (2024).

  • Wang, W. et al. Association of semaglutide with risk of suicidal ideation in a real-world cohort. Nat. Med. 30, 168–176 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurindo, L. F. et al. GLP-1a: going beyond traditional use. Int. J. Mol. Sci. 23, 739 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubin, R. Could GLP-1 receptor agonists like semaglutide treat addiction, Alzheimer disease, and other conditions? JAMA 331, 1519–1521 (2024).

    PubMed 

    Google Scholar
     

  • Wang, W. et al. Associations of semaglutide with incidence and recurrence of alcohol use disorder in real-world population. Nat. Commun. 15, 4548 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Association of semaglutide with tobacco use disorder in patients with type 2 diabetes: target trial emulation using real-world data. Ann. Intern. Med. 177, 1016–1027 (2024).

    PubMed 

    Google Scholar
     

  • Drucker, D. J. The benefits of GLP-1 drugs beyond obesity. Science 385, 258–260 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Lenharo, M. Why do obesity drugs seem to treat so many other ailments? Nature 633, 758–760 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Leggio, L. et al. GLP-1 receptor agonists are promising but unproven treatments for alcohol and substance use disorders. Nat. Med. 29, 2993–2995 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wium-Andersen, I. K. et al. Use of GLP-1 receptor agonists and subsequent risk of alcohol-related events. A nationwide register-based cohort and self-controlled case series study. Basic Clin. Pharmacol. Toxicol. 131, 372–379 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klausen, M. K. et al. Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial. JCI Insight 7, e159863 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yammine, L., Balderas, J. C., Weaver, M. F. & Schmitz, J. M. Feasibility of exenatide, a GLP-1R agonist, for treating cocaine use disorder: a case series study. J. Addict. Med. 17, 481–484 (2023).

    PubMed 

    Google Scholar
     

  • Angarita, G. A. et al. Testing the effects of the GLP-1 receptor agonist exenatide on cocaine self-administration and subjective responses in humans with cocaine use disorder. Drug Alcohol Depend. 221, 108614 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit, T. S., Sharma, A. N., Lucot, J. B. & Elased, K. M. Antipsychotic-like effect of GLP-1 agonist liraglutide but not DPP-IV inhibitor sitagliptin in mouse model for psychosis. Physiol. Behav. 114−115, 38–41 (2013).


    Google Scholar
     

  • Gunturu, S. The potential role of GLP-1 agonists in psychiatric disorders: a paradigm shift in mental health treatment. Indian J. Psychol. Med. 46, 193–195 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Ojeda, W. & Hurley, R. A. Glucagon-like peptide 1: an introduction and possible implications for neuropsychiatry. J. Neuropsychiatry Clin. Neurosci. 36, A4–A86 (2024).

    PubMed 

    Google Scholar
     

  • Flintoff, J., Kesby, J. P., Siskind, D. & Burne, T. H. J. Treating cognitive impairment in schizophrenia with GLP-1RAs: an overview of their therapeutic potential. Expert Opin. Investig. Drugs 30, 877–891 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • European Medicines Agency. Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 8−11 April 2024. https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-prac-8-11-april-2024 (12 April 2024).

  • Du, H., Meng, X., Yao, Y. & Xu, J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer’s disease. Front. Endocrinol. 13, 1033479 (2022).


    Google Scholar
     

  • Mehan, S. et al. Potential roles of glucagon-like peptide-1 and its analogues in dementia targeting impaired insulin secretion and neurodegeneration. Degener. Neurol. Neuromuscul. Dis. 12, 31–59 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colin, I. M., Szczepanski, L. W., Gérard, A. C. & Elosegi, J. A. Emerging evidence for the use of antidiabetic drugs, glucagon-like peptide 1 receptor agonists, for the treatment of Alzheimer’s disease. touchREV. Endocrinol. 19, 16–24 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenharo, M. Obesity drugs have another superpower: taming inflammation. Nature 626, 246 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Nørgaard, C. H. et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimer’s Dement. 8, e12268 (2022).


    Google Scholar
     

  • De Giorgi, R. et al. 12-month neurological and psychiatric outcomes of semaglutide use for type 2 diabetes: a propensity-score matched cohort study. eClinicalMedicine 74, 102726 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atri, A. et al. evoke and evoke+: design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating the neuroprotective effects of semaglutide in early Alzheimer’s disease. Alzheimer’s Dement. 18, e062415 (2022).


    Google Scholar
     

  • Manavi, M. A. Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities. Neuropeptides 94, 102250 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole‑kindled mice. Int. J. Mol. Med. 48, 219 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussein, A. M. et al. Effects of GLP-1 receptor activation on a pentylenetetrazole−kindling rat model. Brain Sci. 9, 108 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. The glucagon-like peptide-1 analogue liraglutide reduces seizures susceptibility, cognition dysfunction and neuronal apoptosis in a mouse model of Dravet syndrome. Front. Pharmacol. 11, 136 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jia, G., Aroor, A. R. & Sowers, J. R. Glucagon-like peptide 1 receptor activation and platelet function: beyond glycemic control. Diabetes 65, 1487–1489 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 24, 15–30 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Sternkopf, M. et al. Native, intact glucagon-like peptide 1 is a natural suppressor of thrombus growth under physiological flow conditions. Arter. Thromb. Vasc. Biol. 40, e65–e77 (2020).

    CAS 

    Google Scholar
     

  • Steven, S. et al. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice. Br. J. Pharmacol. 174, 1620–1632 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Cameron-Vendrig, A. et al. Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes 65, 1714–1723 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Chen, R., Jia, Y., Chen, M. & Shuai, Z. Effects of exenatide on coagulation and platelet aggregation in patients with type 2 diabetes. Drug Des. Devel. Ther. 15, 3027–3040 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horvei, L. D., Brækkan, S. K. & Hansen, J. B. Weight change and risk of venous thromboembolism: the Tromsø study. PLoS ONE 11, e0168878 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Lemos, J. A. et al. Tirzepatide reduces 24-hour ambulatory blood pressure in adults with body mass index ≥27 kg/m2: SURMOUNT-1 Ambulatory Blood Pressure Monitoring Substudy. Hypertension 81, e41–e43 (2024).

    PubMed 

    Google Scholar
     

  • Goodwill, A. G. et al. Cardiovascular and hemodynamic effects of glucagon-like peptide-1. Rev. Endocr. Metab. Disord. 15, 209–217 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro-Silva, J. C., Tavares, C. A. M. & Girardi, A. C. C. The blood pressure lowering effects of glucagon-like peptide-1 receptor agonists: a mini-review of the potential mechanisms. Curr. Opin. Pharmacol. 69, 102355 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Goud, A., Zhong, J., Peters, M., Brook, R. D. & Rajagopalan, S. GLP-1 agonists and blood pressure: a review of the evidence. Curr. Hypertens. Rep. 18, 16 (2016).

    PubMed 

    Google Scholar
     

  • Yang, F. et al. GLP-1 receptor: a new target for sepsis. Front. Pharmacol. 12, 706908 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helmstädter, J. et al. GLP-1 analog liraglutide improves vascular function in polymicrobial sepsis by reduction of oxidative stress and inflammation. Antioxidants 10, 1175 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, H. et al. Activation of glucagon-like peptide-1 receptor in microglia exerts protective effects against sepsis-induced encephalopathy via attenuating endoplasmic reticulum stress-associated inflammation and apoptosis in a mouse model of sepsis. Exp. Neurol. 363, 114348 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Scirica, B. et al. The effect of semaglutide on mortality and COVID-19–related deaths.JACC 84, 1632–1642 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Xu, R., Kaelber, D. C. & Berger, N. A. Glucagon-like peptide 1 receptor agonists and 13 obesity-associated cancers in patients with type 2 diabetes. JAMA Netw. Open 7, e2421305 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, M. et al. The relationship between the use of GLP-1 receptor agonists and the incidence of respiratory illness: a meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 15, 164 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altintas Dogan, A. D. et al. Respiratory effects of treatment with a glucagon-like peptide-1 receptor agonist in patients suffering from obesity and chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 17, 405–414 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foer, D. et al. Association of GLP-1 receptor agonists with chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes. Am. J. Respir. Crit. Care Med. 208, 1088–1100 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pradhan, R. et al. Novel antihyperglycaemic drugs and prevention of chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes: population based cohort study. BMJ 379, e071380 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeo, Y.H. et al. Increased risk of aspiration pneumonia associated with endoscopic procedures among patients with glucagon-like peptide 1 receptor agonist use.Gastroenterology 167, 402–404 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Dixit, A. A., Bateman, B. T., Hawn, M. T., Odden, M. C. & Sun, E. C. Preoperative GLP-1 receptor agonist use and risk of postoperative respiratory complications. JAMA 331, 1672–1673 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. The role of glucagon-like peptide-1 receptor agonists in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 18, 129–137 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langenberg, C., Hingorani, A. D. & Whitty, C. J. M. Biological and functional multimorbidity—from mechanisms to management. Nat. Med. 29, 1649–1657 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Postacute sequelae of SARS-CoV-2 infection in the pre-Delta, Delta, and Omicron eras. N. Engl. J. Med. 391, 515–525 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, M., Xie, Y., Topol, E. J. & Al-Aly, Z. Three-year outcomes of post-acute sequelae of COVID-19. Nat. Med. 30, 1564–1573 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 29, 2347–2357 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, E., Xie, Y. & Al-Aly, Z. Long-term gastrointestinal outcomes of COVID-19. Nat. Commun. 14, 983 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, E., Xie, Y. & Al-Aly, Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol. 11, 120–128 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Long-term outcomes following hospital admission for COVID-19 versus seasonal influenza: a cohort study. Lancet Infect. Dis. 24, 239–255 (2024).

    PubMed 

    Google Scholar
     

  • Al-Aly, Z. & Topol, E. Solving the puzzle of long Covid. Science 383, 830–832 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aly, Z. et al. Long COVID science, research and policy. Nat. Med. 30, 2148–2164 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Proton pump inhibitors and risk of incident CKD and progression to ESRD. J. Am. Soc. Nephrol. 27, 3153–3163 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Risk of death among users of proton pump inhibitors: a longitudinal observational cohort study of United States veterans. BMJ Open 7, e015735 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Long-term kidney outcomes among users of proton pump inhibitors without intervening acute kidney injury. Kidney Int. 91, 1482–1494 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int. 93, 741–752 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Maynard, C. Ascertaining veterans’ vital status: VA data sources for mortality ascertainment and cause of death. https://www.hsrd.research.va.gov/for_researchers/cyber_seminars/archives/3783-notes.pdf (2017).

  • Cai, M. et al. Temporal trends in incidence rates of lower extremity amputation and associated risk factors among patients using Veterans Health Administration services from 2008 to 2018. JAMA Netw. Open 4, e2033953 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of major adverse cardiovascular events: emulation of a randomised target trial using electronic health records. Lancet Diabetes Endocrinol. 11, 644–656 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Clinical implications of estimated glomerular filtration rate dip following sodium−glucose cotransporter-2 inhibitor initiation on cardiovascular and kidney outcomes. J. Am. Heart Assoc. 10, e020237 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of sodium−glucose cotransporter 2 inhibitors vs sulfonylureas in patients with type 2 diabetes. JAMA Intern. Med. 181, 1043–1053 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of kidney outcomes: emulation of a target trial using health care databases. Diabetes Care 43, 2859–2869 (2020).

    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of the sodium−glucose cotransporter 2 inhibitor empagliflozin versus other antihyperglycemics on risk of major adverse kidney events. Diabetes Care 43, 2785–2795 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19.JAMA Intern. Med. 183, 554–564 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Bowe, B. & Al-Aly, Z. Nirmatrelvir and risk of hospital admission or death in adults with Covid-19: emulation of a randomized target trial using electronic health records. BMJ 381, e073312 (2023).

    PubMed 

    Google Scholar
     

  • Xie, Y., Bowe, B. & Al-Aly, Z. Molnupiravir and risk of hospital admission or death in adults with Covid-19: emulation of a randomized target trial using electronic health records. BMJ 380, e072705 (2023).

    PubMed 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Molnupiravir and risk of post-acute sequelae of Covid-19: cohort study. BMJ 381, e074572 (2023).

    PubMed 

    Google Scholar
     

  • van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16, 219–242 (2007).

    PubMed 

    Google Scholar
     

  • Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis (Springer, 2015).

  • Schneeweiss, S. Automated data-adaptive analytics for electronic healthcare data to study causal treatment effects. Clin. Epidemiol. 10, 771–788 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneeweiss, S. et al. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20, 512–522 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity‐score matched samples. Stat. Med. 28, 3083–3107 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crump, R. K., Hotz, V. J., Imbens, G. W. & Mitnik, O. A. Dealing with limited overlap in estimation of average treatment effects. Biometrika 96, 187–199 (2009).


    Google Scholar
     

  • Hernan, M. A. & Robins, J. M. Causal Inference: What If (CRC Press, 2010).

  • Uno, H. et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clin. Oncol. 32, 2380–2385 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen, P. K., Hansen, M. G. & Klein, J. P. Regression analysis of restricted mean survival time based on pseudo-observations. Lifetime Data Anal. 10, 335–350 (2004).

    PubMed 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).


    Google Scholar
     



  • GLP-1 receptor agonists are a class of medications commonly used to treat type 2 diabetes by stimulating insulin production and reducing blood sugar levels. However, like any medication, there are potential risks and side effects associated with their use.

    In this post, we will explore the effectiveness of GLP-1 receptor agonists in managing type 2 diabetes, as well as the potential risks and side effects that patients should be aware of.

    Effectiveness of GLP-1 receptor agonists:

    Studies have shown that GLP-1 receptor agonists are highly effective in lowering blood sugar levels in patients with type 2 diabetes. They work by stimulating the release of insulin from the pancreas, slowing down digestion, and reducing the production of glucose in the liver.

    In addition to lowering blood sugar levels, GLP-1 receptor agonists have also been shown to promote weight loss in patients with type 2 diabetes. This is because they can reduce appetite and increase feelings of fullness, leading to a decrease in caloric intake.

    Risks and side effects of GLP-1 receptor agonists:

    While GLP-1 receptor agonists are generally well-tolerated, there are some potential risks and side effects that patients should be aware of. These can include:

    – Nausea and vomiting
    – Diarrhea
    – Hypoglycemia (low blood sugar)
    – Pancreatitis
    – Thyroid tumors
    – Allergic reactions

    It’s important for patients to discuss the potential risks and benefits of GLP-1 receptor agonists with their healthcare provider before starting treatment. Additionally, patients should be monitored regularly for any signs of side effects or complications.

    Overall, GLP-1 receptor agonists are a valuable treatment option for patients with type 2 diabetes, but it’s important to weigh the potential risks and benefits before starting treatment. By mapping out the effectiveness and risks of these medications, patients can make informed decisions about their diabetes management.

    Tags:

    1. GLP-1 receptor agonists
    2. Effectiveness of GLP-1 receptor agonists
    3. Risks of GLP-1 receptor agonists
    4. GLP-1 agonist benefits
    5. GLP-1 receptor agonist safety
    6. GLP-1 agonist side effects
    7. GLP-1 agonist risk assessment
    8. GLP-1 receptor agonist efficacy
    9. GLP-1 agonist comparison
    10. GLP-1 agonist research findings

    #Mapping #effectiveness #risks #GLP1 #receptor #agonists

  • Mapping the effectiveness and risks of GLP-1 receptor agonists


  • Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381, 841–851 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377, 1228–1239 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392, 1519–1529 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N. Engl. J. Med. 385, 896–907 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 391, 109–121 (2024).


    Google Scholar
     

  • Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069–1084 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 394, 131–138 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Muskiet, M. H. A. et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 6, 859–869 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Tuttle, K. R. et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 6, 605–617 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, A. S. et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N. Engl. J. Med. 382, 2117–2128 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wharton, S. et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N. Engl. J. Med. 389, 877–888 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, J. H., Kwon, J., Nan, B. & Reikes, A. Trends in glucagon-like peptide 1 receptor agonist use, 2014 to 2022. J. Am. Pharm. Assoc. 64, 133–138 (2024).

    CAS 

    Google Scholar
     

  • Hegland, T.A., Fang, Z. & Bucher, K. GLP-1 medication use for type 2 diabetes has soared.JAMA 332, 952–953 (2024).

    PubMed 

    Google Scholar
     

  • Sodhi, M., Rezaeianzadeh, R., Kezouh, A. & Etminan, M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA 330, 1795–1797 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidal, J., Flores, L., Jiménez, A., Pané, A. & de Hollanda, A. What is the evidence regarding the safety of new obesity pharmacotherapies. Int. J. Obes. https://doi.org/10.1038/s41366-024-01488-5 (2024).

  • Wang, W. et al. Association of semaglutide with risk of suicidal ideation in a real-world cohort. Nat. Med. 30, 168–176 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurindo, L. F. et al. GLP-1a: going beyond traditional use. Int. J. Mol. Sci. 23, 739 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubin, R. Could GLP-1 receptor agonists like semaglutide treat addiction, Alzheimer disease, and other conditions? JAMA 331, 1519–1521 (2024).

    PubMed 

    Google Scholar
     

  • Wang, W. et al. Associations of semaglutide with incidence and recurrence of alcohol use disorder in real-world population. Nat. Commun. 15, 4548 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Association of semaglutide with tobacco use disorder in patients with type 2 diabetes: target trial emulation using real-world data. Ann. Intern. Med. 177, 1016–1027 (2024).

    PubMed 

    Google Scholar
     

  • Drucker, D. J. The benefits of GLP-1 drugs beyond obesity. Science 385, 258–260 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Lenharo, M. Why do obesity drugs seem to treat so many other ailments? Nature 633, 758–760 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Leggio, L. et al. GLP-1 receptor agonists are promising but unproven treatments for alcohol and substance use disorders. Nat. Med. 29, 2993–2995 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wium-Andersen, I. K. et al. Use of GLP-1 receptor agonists and subsequent risk of alcohol-related events. A nationwide register-based cohort and self-controlled case series study. Basic Clin. Pharmacol. Toxicol. 131, 372–379 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klausen, M. K. et al. Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial. JCI Insight 7, e159863 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yammine, L., Balderas, J. C., Weaver, M. F. & Schmitz, J. M. Feasibility of exenatide, a GLP-1R agonist, for treating cocaine use disorder: a case series study. J. Addict. Med. 17, 481–484 (2023).

    PubMed 

    Google Scholar
     

  • Angarita, G. A. et al. Testing the effects of the GLP-1 receptor agonist exenatide on cocaine self-administration and subjective responses in humans with cocaine use disorder. Drug Alcohol Depend. 221, 108614 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit, T. S., Sharma, A. N., Lucot, J. B. & Elased, K. M. Antipsychotic-like effect of GLP-1 agonist liraglutide but not DPP-IV inhibitor sitagliptin in mouse model for psychosis. Physiol. Behav. 114−115, 38–41 (2013).


    Google Scholar
     

  • Gunturu, S. The potential role of GLP-1 agonists in psychiatric disorders: a paradigm shift in mental health treatment. Indian J. Psychol. Med. 46, 193–195 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Ojeda, W. & Hurley, R. A. Glucagon-like peptide 1: an introduction and possible implications for neuropsychiatry. J. Neuropsychiatry Clin. Neurosci. 36, A4–A86 (2024).

    PubMed 

    Google Scholar
     

  • Flintoff, J., Kesby, J. P., Siskind, D. & Burne, T. H. J. Treating cognitive impairment in schizophrenia with GLP-1RAs: an overview of their therapeutic potential. Expert Opin. Investig. Drugs 30, 877–891 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • European Medicines Agency. Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 8−11 April 2024. https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-prac-8-11-april-2024 (12 April 2024).

  • Du, H., Meng, X., Yao, Y. & Xu, J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer’s disease. Front. Endocrinol. 13, 1033479 (2022).


    Google Scholar
     

  • Mehan, S. et al. Potential roles of glucagon-like peptide-1 and its analogues in dementia targeting impaired insulin secretion and neurodegeneration. Degener. Neurol. Neuromuscul. Dis. 12, 31–59 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colin, I. M., Szczepanski, L. W., Gérard, A. C. & Elosegi, J. A. Emerging evidence for the use of antidiabetic drugs, glucagon-like peptide 1 receptor agonists, for the treatment of Alzheimer’s disease. touchREV. Endocrinol. 19, 16–24 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenharo, M. Obesity drugs have another superpower: taming inflammation. Nature 626, 246 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Nørgaard, C. H. et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimer’s Dement. 8, e12268 (2022).


    Google Scholar
     

  • De Giorgi, R. et al. 12-month neurological and psychiatric outcomes of semaglutide use for type 2 diabetes: a propensity-score matched cohort study. eClinicalMedicine 74, 102726 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atri, A. et al. evoke and evoke+: design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating the neuroprotective effects of semaglutide in early Alzheimer’s disease. Alzheimer’s Dement. 18, e062415 (2022).


    Google Scholar
     

  • Manavi, M. A. Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities. Neuropeptides 94, 102250 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole‑kindled mice. Int. J. Mol. Med. 48, 219 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussein, A. M. et al. Effects of GLP-1 receptor activation on a pentylenetetrazole−kindling rat model. Brain Sci. 9, 108 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. The glucagon-like peptide-1 analogue liraglutide reduces seizures susceptibility, cognition dysfunction and neuronal apoptosis in a mouse model of Dravet syndrome. Front. Pharmacol. 11, 136 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jia, G., Aroor, A. R. & Sowers, J. R. Glucagon-like peptide 1 receptor activation and platelet function: beyond glycemic control. Diabetes 65, 1487–1489 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 24, 15–30 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Sternkopf, M. et al. Native, intact glucagon-like peptide 1 is a natural suppressor of thrombus growth under physiological flow conditions. Arter. Thromb. Vasc. Biol. 40, e65–e77 (2020).

    CAS 

    Google Scholar
     

  • Steven, S. et al. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice. Br. J. Pharmacol. 174, 1620–1632 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Cameron-Vendrig, A. et al. Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes 65, 1714–1723 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Chen, R., Jia, Y., Chen, M. & Shuai, Z. Effects of exenatide on coagulation and platelet aggregation in patients with type 2 diabetes. Drug Des. Devel. Ther. 15, 3027–3040 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horvei, L. D., Brækkan, S. K. & Hansen, J. B. Weight change and risk of venous thromboembolism: the Tromsø study. PLoS ONE 11, e0168878 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Lemos, J. A. et al. Tirzepatide reduces 24-hour ambulatory blood pressure in adults with body mass index ≥27 kg/m2: SURMOUNT-1 Ambulatory Blood Pressure Monitoring Substudy. Hypertension 81, e41–e43 (2024).

    PubMed 

    Google Scholar
     

  • Goodwill, A. G. et al. Cardiovascular and hemodynamic effects of glucagon-like peptide-1. Rev. Endocr. Metab. Disord. 15, 209–217 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro-Silva, J. C., Tavares, C. A. M. & Girardi, A. C. C. The blood pressure lowering effects of glucagon-like peptide-1 receptor agonists: a mini-review of the potential mechanisms. Curr. Opin. Pharmacol. 69, 102355 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Goud, A., Zhong, J., Peters, M., Brook, R. D. & Rajagopalan, S. GLP-1 agonists and blood pressure: a review of the evidence. Curr. Hypertens. Rep. 18, 16 (2016).

    PubMed 

    Google Scholar
     

  • Yang, F. et al. GLP-1 receptor: a new target for sepsis. Front. Pharmacol. 12, 706908 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helmstädter, J. et al. GLP-1 analog liraglutide improves vascular function in polymicrobial sepsis by reduction of oxidative stress and inflammation. Antioxidants 10, 1175 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, H. et al. Activation of glucagon-like peptide-1 receptor in microglia exerts protective effects against sepsis-induced encephalopathy via attenuating endoplasmic reticulum stress-associated inflammation and apoptosis in a mouse model of sepsis. Exp. Neurol. 363, 114348 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Scirica, B. et al. The effect of semaglutide on mortality and COVID-19–related deaths.JACC 84, 1632–1642 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Xu, R., Kaelber, D. C. & Berger, N. A. Glucagon-like peptide 1 receptor agonists and 13 obesity-associated cancers in patients with type 2 diabetes. JAMA Netw. Open 7, e2421305 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, M. et al. The relationship between the use of GLP-1 receptor agonists and the incidence of respiratory illness: a meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 15, 164 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altintas Dogan, A. D. et al. Respiratory effects of treatment with a glucagon-like peptide-1 receptor agonist in patients suffering from obesity and chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 17, 405–414 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foer, D. et al. Association of GLP-1 receptor agonists with chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes. Am. J. Respir. Crit. Care Med. 208, 1088–1100 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pradhan, R. et al. Novel antihyperglycaemic drugs and prevention of chronic obstructive pulmonary disease exacerbations among patients with type 2 diabetes: population based cohort study. BMJ 379, e071380 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeo, Y.H. et al. Increased risk of aspiration pneumonia associated with endoscopic procedures among patients with glucagon-like peptide 1 receptor agonist use.Gastroenterology 167, 402–404 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Dixit, A. A., Bateman, B. T., Hawn, M. T., Odden, M. C. & Sun, E. C. Preoperative GLP-1 receptor agonist use and risk of postoperative respiratory complications. JAMA 331, 1672–1673 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. The role of glucagon-like peptide-1 receptor agonists in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 18, 129–137 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langenberg, C., Hingorani, A. D. & Whitty, C. J. M. Biological and functional multimorbidity—from mechanisms to management. Nat. Med. 29, 1649–1657 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Postacute sequelae of SARS-CoV-2 infection in the pre-Delta, Delta, and Omicron eras. N. Engl. J. Med. 391, 515–525 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, M., Xie, Y., Topol, E. J. & Al-Aly, Z. Three-year outcomes of post-acute sequelae of COVID-19. Nat. Med. 30, 1564–1573 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 29, 2347–2357 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, E., Xie, Y. & Al-Aly, Z. Long-term gastrointestinal outcomes of COVID-19. Nat. Commun. 14, 983 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, E., Xie, Y. & Al-Aly, Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol. 11, 120–128 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Long-term outcomes following hospital admission for COVID-19 versus seasonal influenza: a cohort study. Lancet Infect. Dis. 24, 239–255 (2024).

    PubMed 

    Google Scholar
     

  • Al-Aly, Z. & Topol, E. Solving the puzzle of long Covid. Science 383, 830–832 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aly, Z. et al. Long COVID science, research and policy. Nat. Med. 30, 2148–2164 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Proton pump inhibitors and risk of incident CKD and progression to ESRD. J. Am. Soc. Nephrol. 27, 3153–3163 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Risk of death among users of proton pump inhibitors: a longitudinal observational cohort study of United States veterans. BMJ Open 7, e015735 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Long-term kidney outcomes among users of proton pump inhibitors without intervening acute kidney injury. Kidney Int. 91, 1482–1494 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int. 93, 741–752 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Maynard, C. Ascertaining veterans’ vital status: VA data sources for mortality ascertainment and cause of death. https://www.hsrd.research.va.gov/for_researchers/cyber_seminars/archives/3783-notes.pdf (2017).

  • Cai, M. et al. Temporal trends in incidence rates of lower extremity amputation and associated risk factors among patients using Veterans Health Administration services from 2008 to 2018. JAMA Netw. Open 4, e2033953 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of major adverse cardiovascular events: emulation of a randomised target trial using electronic health records. Lancet Diabetes Endocrinol. 11, 644–656 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Clinical implications of estimated glomerular filtration rate dip following sodium−glucose cotransporter-2 inhibitor initiation on cardiovascular and kidney outcomes. J. Am. Heart Assoc. 10, e020237 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of sodium−glucose cotransporter 2 inhibitors vs sulfonylureas in patients with type 2 diabetes. JAMA Intern. Med. 181, 1043–1053 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of kidney outcomes: emulation of a target trial using health care databases. Diabetes Care 43, 2859–2869 (2020).

    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Comparative effectiveness of the sodium−glucose cotransporter 2 inhibitor empagliflozin versus other antihyperglycemics on risk of major adverse kidney events. Diabetes Care 43, 2785–2795 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19.JAMA Intern. Med. 183, 554–564 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Bowe, B. & Al-Aly, Z. Nirmatrelvir and risk of hospital admission or death in adults with Covid-19: emulation of a randomized target trial using electronic health records. BMJ 381, e073312 (2023).

    PubMed 

    Google Scholar
     

  • Xie, Y., Bowe, B. & Al-Aly, Z. Molnupiravir and risk of hospital admission or death in adults with Covid-19: emulation of a randomized target trial using electronic health records. BMJ 380, e072705 (2023).

    PubMed 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Molnupiravir and risk of post-acute sequelae of Covid-19: cohort study. BMJ 381, e074572 (2023).

    PubMed 

    Google Scholar
     

  • van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16, 219–242 (2007).

    PubMed 

    Google Scholar
     

  • Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis (Springer, 2015).

  • Schneeweiss, S. Automated data-adaptive analytics for electronic healthcare data to study causal treatment effects. Clin. Epidemiol. 10, 771–788 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneeweiss, S. et al. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20, 512–522 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity‐score matched samples. Stat. Med. 28, 3083–3107 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crump, R. K., Hotz, V. J., Imbens, G. W. & Mitnik, O. A. Dealing with limited overlap in estimation of average treatment effects. Biometrika 96, 187–199 (2009).


    Google Scholar
     

  • Hernan, M. A. & Robins, J. M. Causal Inference: What If (CRC Press, 2010).

  • Uno, H. et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clin. Oncol. 32, 2380–2385 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen, P. K., Hansen, M. G. & Klein, J. P. Regression analysis of restricted mean survival time based on pseudo-observations. Lifetime Data Anal. 10, 335–350 (2004).

    PubMed 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).


    Google Scholar
     



  • GLP-1 receptor agonists are a class of medications commonly used to treat type 2 diabetes by stimulating insulin production and reducing blood sugar levels. However, like any medication, there are potential risks and side effects associated with their use.

    In this post, we will explore the effectiveness of GLP-1 receptor agonists in managing type 2 diabetes, as well as the potential risks and side effects that patients should be aware of.

    Effectiveness of GLP-1 receptor agonists:

    Studies have shown that GLP-1 receptor agonists are highly effective in lowering blood sugar levels in patients with type 2 diabetes. They work by stimulating the release of insulin from the pancreas, slowing down digestion, and reducing the production of glucose in the liver.

    In addition to lowering blood sugar levels, GLP-1 receptor agonists have also been shown to promote weight loss in patients with type 2 diabetes. This is because they can reduce appetite and increase feelings of fullness, leading to a decrease in caloric intake.

    Risks and side effects of GLP-1 receptor agonists:

    While GLP-1 receptor agonists are generally well-tolerated, there are some potential risks and side effects that patients should be aware of. These can include:

    – Nausea and vomiting
    – Diarrhea
    – Hypoglycemia (low blood sugar)
    – Pancreatitis
    – Thyroid tumors
    – Allergic reactions

    It’s important for patients to discuss the potential risks and benefits of GLP-1 receptor agonists with their healthcare provider before starting treatment. Additionally, patients should be monitored regularly for any signs of side effects or complications.

    Overall, GLP-1 receptor agonists are a valuable treatment option for patients with type 2 diabetes, but it’s important to weigh the potential risks and benefits before starting treatment. By mapping out the effectiveness and risks of these medications, patients can make informed decisions about their diabetes management.

    Tags:

    1. GLP-1 receptor agonists
    2. Effectiveness of GLP-1 receptor agonists
    3. Risks of GLP-1 receptor agonists
    4. GLP-1 agonist benefits
    5. GLP-1 receptor agonist safety
    6. GLP-1 agonist side effects
    7. GLP-1 agonist risk assessment
    8. GLP-1 receptor agonist efficacy
    9. GLP-1 agonist comparison
    10. GLP-1 agonist research findings

    #Mapping #effectiveness #risks #GLP1 #receptor #agonists

  • Built by Nature Akkermansia Muciniphila Probiotic Supplement – 1 Billion AFU – Supports GLP-1, Immune & Digestive Gut Health – 30 Delayed Release Blister Packed Capsules

    Built by Nature Akkermansia Muciniphila Probiotic Supplement – 1 Billion AFU – Supports GLP-1, Immune & Digestive Gut Health – 30 Delayed Release Blister Packed Capsules


    Price: $29.99 – $14.72
    (as of Dec 14,2024 01:14:50 UTC – Details)



    Discover the greatest innovation in probiotics with Built By Nature’s Akkermansia Probiotic Supplement. This rare and revolutionary probiotic supports the production of GLP-1, supporting digestion unlike any other probiotic before. Each capsule is packed with 1 Billion AFU Akkermansia muciniphila Akk11, known for its unique ability to nourish the gut lining and support a healthy mucosal barrier. This contributes to better digestion and immune health. Our advanced delayed release capsules are engineered to bypass the harsh environment of stomach acid, ensuring the probiotics arrive intact in the intestines where they can thrive and deliver maximum benefits. We have meticulously sealed each capsule in aluminum blister packaging to better protect the Akkermansia probiotics to ensure effectiveness. For men and women take one (1) capsule daily with water and a meal.
    Package Dimensions ‏ : ‎ 6.3 x 4.37 x 1.46 inches; 1.76 ounces
    Date First Available ‏ : ‎ April 29, 2024
    Manufacturer ‏ : ‎ Built By Nature
    ASIN ‏ : ‎ B0D2YDZNHQ
    Country of Origin ‏ : ‎ China

    1 Billion AFU: Each capsule contains 1 Billion AFU of live strain Akkermansia muciniphila Akk11, an innovative next generation probiotic strain known for its unique ability to nourish the gut lining.
    GLP-1 Support: Built By Nature’s Akkermansia Probiotic is designed to naturally support the production of GLP-1.
    Immune and Digestive Support: Akkermansia is known to help repair the gut lining, boosting immune health and digestion.
    Delayed Release Capsules: Utilizing stomach acid resistant capsules and blister packaging helps ensure the probiotics stay protected, allowing the Akkermansia to reach your intestinal tract intact for maximum effectiveness. For men and women take one (1) capsule daily with water and a meal.
    Quality and Purity Assured: Rigorously tested and certified for quality, we are committed to delivering the purest, safest, and most effective probiotics without compromise.


    Introducing our latest innovation in gut health: Built by Nature Akkermansia Muciniphila Probiotic Supplement. This powerful supplement contains 1 Billion AFU of the beneficial bacteria Akkermansia Muciniphila, known for its ability to support GLP-1, immune function, and digestive health.

    Our formula is specially designed with delayed-release capsules to ensure the probiotics reach your gut intact, where they can work their magic. Each blister pack contains 30 capsules, providing a month’s supply of gut-boosting goodness.

    Say goodbye to digestive issues and hello to a healthier gut with Built by Nature Akkermansia Muciniphila Probiotic Supplement. Try it today and experience the benefits for yourself!
    #Built #Nature #Akkermansia #Muciniphila #Probiotic #Supplement #Billion #AFU #Supports #GLP1 #Immune #Digestive #Gut #Health #Delayed #Release #Blister #Packed #Capsules

  • Akkermansia Probiotic Supplement with Prebiotic Inulin Fiber GLP-1 Production

    Akkermansia Probiotic Supplement with Prebiotic Inulin Fiber GLP-1 Production



    Akkermansia Probiotic Supplement with Prebiotic Inulin Fiber GLP-1 Production

    Price : 23.62

    Ends on : N/A

    View on eBay
    Are you looking to improve your gut health and support weight management? Look no further than Akkermansia Probiotic Supplement with Prebiotic Inulin Fiber!

    Akkermansia is a beneficial bacteria that has been shown to support a healthy gut microbiome and improve metabolic health. By taking a daily probiotic supplement containing Akkermansia, you can help promote the growth of this beneficial bacteria in your gut, leading to better digestion and overall wellness.

    In addition to Akkermansia, this supplement also contains prebiotic inulin fiber, which helps to feed and nourish the good bacteria in your gut. This combination of probiotics and prebiotics can help to improve gut function, reduce inflammation, and support weight management.

    Furthermore, Akkermansia has been found to increase the production of GLP-1, a hormone that helps regulate blood sugar levels and promote satiety. By supporting the production of GLP-1, this supplement can help to improve insulin sensitivity and control cravings, making it easier to maintain a healthy weight.

    If you’re looking to support your gut health and improve your overall well-being, consider adding Akkermansia Probiotic Supplement with Prebiotic Inulin Fiber to your daily routine. Your gut will thank you!
    #Akkermansia #Probiotic #Supplement #Prebiotic #Inulin #Fiber #GLP1 #Production

  • Chat Icon